NATURE-SCI-ZOOLOGY: SANTA BARBARA CALIFORNIA- Rare leopard cub makes debut at Santa Barbara Zoo

Marta, a rare Amur leopard cub at the Santa Barbara Zoo in Santa Barbara, California. PHOTO: AP



SANTA BARBARA, CALIFORNIA (AP) – A rare Amur leopard cub has made her public debut at the Santa Barbara Zoo.

The cub, named Marta, spent about an hour in her outdoor habitat on Thursday morning, KSBY-TV reported.

Marta was born in August and had remained off exhibit since then to bond with her mother.
Amur leopards are native to northeast Asia and are critically endangered, according to the World Wildlife Fund.

They are also known as the Far East leopard, the Manchurian leopard or the Korean leopard.


ZOOLOGY-Animal studies

From Wikipedia, the free encyclopedia

Animal studies is a recently recognised field in which animals are studied in a variety of cross-disciplinary ways. Scholars who engage in animal studies may be formally trained in a number of diverse fields, including geographyart historyanthropologybiologyfilm studiesgeographyhistorypsychologyliterary studiesmuseologyphilosophy, communication, and sociology. They engage with questions about notions of “animality,” “animalization,” or “becoming animal,” to understand human-made representations of and cultural ideas about “the animal” and what it is to be human by employing various theoretical perspectives, including feminismMarxist theory, and queer theory. Using these perspectives, those who engage in animal studies seek to understand both human-animal relations now and in the past as defined by our knowledge of them. Because the field is still developing, scholars and others have some freedom to define their own criteria about what issues may structure the field.[1]


As an interdisciplinary subject, animal studies exists at the intersection of a number of different fields of study. Different fields began to turn to animals as an important topic at different times and for various reasons, and these separate disciplinary histories shape how scholars approach animal studies. Historically, the field of environmental history has encouraged attention to animals.[2]

In part, animal studies developed out of the animal liberation movement and was grounded in ethical questions about co-existence with other species: whether it is moral to eat animals, to do scientific research on animals for human benefit, and so on. Animal studies scholars who explore the field from an ethical perspective frequently cite Australian philosopher Peter Singer‘s 1975 work, Animal Liberation,[3] as a founding document in animal studies. Singer’s work followed Jeremy Bentham‘s by trying to expand utilitarian questions about pleasure and pain beyond humans to other sentient creatures.

Theorists interested in the role of animals in literature, culture, and Continental philosophy also consider the late work of Jacques Derrida a driving force behind the rise of interest in animal studies in the humanities.[3] Derrida’s final lecture series, The Animal That Therefore I Am, examined how interactions with animal life affect human attempts to define humanity and the self through language. Taking up Derrida’s deconstruction and extending it to other cultural territory, Cary Wolfe published Animal Rites in 2003 and critiqued earlier animal rights philosophers such as Peter Singer and Thomas Regan. Wolfe’s study points out an insidious humanism at play in their philosophies and others. Recently also the Italian philosopher Giorgio Agamben published a book on the question of the animal: The Open. Man and Animal.

Research topics and methodologies

Researchers in animal studies examine the questions and issues that arise when traditional modes of humanistic and scientific inquiry begin to take animals seriously as subjects of thought and activity. Students of animal studies may examine how humanity is defined in relation to animals, or how representations of animals create understandings (and misunderstandings) of other species. In order to do so, animal studies pays close attention to the ways that humans anthropomorphize animals, and asks how humans might avoid bias in observing other creatures. For instance, Donna Haraway‘s book, Primate Visions, examines how dioramas created for the American Museum of Natural History showed family groupings that conformed to the traditional human nuclear family, which misrepresented the animals’ observed behavior in the wild.[4] Critical approaches in animal studies have also considered representations of non-human animals in popular culture, including species diversity in animated films.[5]

By highlighting these issues, animal studies strives to re-examine traditional ethicalpolitical, and epistemological categories in the context of a renewed attention to and respect for animal life. The assumption that focusing on animals might clarify human knowledge is neatly expressed in Claude Lévi-Strauss‘s famous dictum that animals are “good to think.”[6]



From Wikipedia, the free encyclopedia
 Animal biology” and “Zoologist” redirect here. For the journals, see Animal Biology and The Zoologist. For other uses, see Zoology (disambiguation).


Zoology (/zˈɒləi/)[note 1] is the branch of biology that studies the animal kingdom, including the structureembryologyevolutionclassificationhabits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. The term is derived from Ancient Greek ζῷονzōion (‘animal’), and λόγοςlogos (‘knowledge’, ‘study’).[1]

Although humans have always been interested in the natural history of the animals they saw around them, and made use of this knowledge to domesticate certain species, the formal study of zoology can be said to have originated with Aristotle. He viewed animals as living organisms, studied their structure and development, and considered their adaptations to their surroundings and the function of their parts. The Greek physician Galen studied human anatomy and was one of the greatest surgeons of the ancient world, but after the fall of the Western Roman Empire and the onset of the Early Middle Ages, the Greek tradition of medicine and scientific study went into decline in Western Europe, although it continued in the medieval Islamic world. Modern zoology has its origins during the Renaissance and early modern period, with Carl LinnaeusAntonie van LeeuwenhoekRobert HookeCharles DarwinGregor Mendel and many others.

The study of animals has largely moved on to deal with form and function, adaptations, relationships between groups, behaviour and ecology. Zoology has increasingly been subdivided into disciplines such as classificationphysiologybiochemistry and evolution. With the discovery of the structure of DNA by Francis Crick and James Watson in 1953, the realm of molecular biology opened up, leading to advances in cell biologydevelopmental biology and molecular genetics.


Conrad Gessner (1516–1565). His Historiae animalium is considered the beginning of modern zoology.

The history of zoology traces the study of the animal kingdom from ancient to modern times. Prehistoric man needed to study the animals and plants in his environment in order to exploit them and survive. There are cave paintings, engravings and sculptures in France dating back 15,000 years showing bison, horses and deer in carefully rendered detail. Similar images from other parts of the world illustrated mostly the animals hunted for food but also the savage animals.[2]

The Neolithic Revolution, which is characterized by the domestication of animals, continued over the period of Antiquity. Ancient knowledge of wildlife is illustrated by the realistic depictions of wild and domestic animals in the Near East, Mesopotamia and Egypt, including husbandry practices and techniques, hunting and fishing. The invention of writing is reflected in zoology by the presence of animals in Egyptian hieroglyphics.[3]

Although the concept of zoology as a single coherent field arose much later, the zoological sciences emerged from natural history reaching back to the biological works of Aristotle and Galen in the ancient Greco-Roman world. Aristotle, in the fourth century BC, looked at animals as living organisms, studying their structure, development and vital phenomena. He divided them into two groups, animals with blood, equivalent to our concept of vertebrates, and animals without blood (invertebrates). He spent two years on Lesbos, observing and describing the animals and plants, considering the adaptations of different organisms and the function of their parts.[4] Four hundred years later, Roman physician Galen dissected animals to study their anatomy and the function of the different parts, because the dissection of human cadavers was prohibited at the time.[5] This resulted in some of his conclusions being false, but for many centuries it was considered heretical to challenge any of his views, so the study of anatomy stultified.[6]

During the post-classical eraMiddle Eastern science and medicine was the most advanced in the world, integrating concepts from Ancient Greece, Rome, Mesopotamia and Persia as well as the ancient Indian tradition of Ayurveda, while making numerous advances and innovations.[7] In the 13th century, Albertus Magnus produced commentaries and paraphrases of all Aristotle’s works; his books on topics like botany, zoology, and minerals included information from ancient sources, but also the results of his own investigations. His general approach was surprisingly modern, and he wrote, “For it is [the task] of natural science not simply to accept what we are told but to inquire into the causes of natural things.”[8] An early pioneer was Conrad Gessner, whose monumental 4,500-page encyclopedia of animals, Historia animalium, was published in four volumes between 1551 and 1558.[9]

In Europe, Galen’s work on anatomy remained largely unsurpassed and unchallenged up until the 16th century.[10][11] During the Renaissance and early modern period, zoological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Andreas Vesalius and William Harvey, who used experimentation and careful observation in physiology, and naturalists such as Carl LinnaeusJean-Baptiste Lamarck, and Buffon who began to classify the diversity of life and the fossil record, as well as studying the development and behavior of organisms. Antonie van Leeuwenhoek did pioneering work in microscopy and revealed the previously unknown world of microorganisms, laying the groundwork for cell theory.[12] van Leeuwenhoek’s observations were endorsed by Robert Hooke; all living organisms were composed of one or more cells and could not generate spontaneously. Cell theory provided a new perspective on the fundamental basis of life.[13]

Having previously been the realm of gentlemen naturalists, over the 18th, 19th and 20th centuries, zoology became an increasingly professional scientific discipline. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography, laying the foundations for biogeographyecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species.[14]

These developments, as well as the results from embryology and paleontology, were synthesized in the 1859 publication of Charles Darwin‘s theory of evolution by natural selection; in this Darwin placed the theory of organic evolution on a new footing, by explaining the processes by which it can occur, and providing observational evidence that it had done so.[15] Darwin’s theory was rapidly accepted by the scientific community and soon became a central axiom of the rapidly developing science of biology. The basis for modern genetics began with the work of Gregor Mendel on peas in 1865, although the significance of his work was not realized at the time.[16]

Darwin gave a new direction to morphology and physiology, by uniting them in a common biological theory: the theory of organic evolution. The result was a reconstruction of the classification of animals upon a genealogical basis, fresh investigation of the development of animals, and early attempts to determine their genetic relationships. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery. In the early 20th century, the rediscovery of Mendel’s work led to the rapid development of genetics, and by the 1930s the combination of population genetics and natural selection in the modern synthesis created evolutionary biology.[17]

Research in cell biology is interconnected to other fields such as genetics, biochemistrymedical microbiologyimmunology, and cytochemistry. With the sequencing of the DNA molecule by Francis Crick and James Watson in 1953, the realm of molecular biology opened up, leading to advances in cell biologydevelopmental biology and molecular genetics. The study of systematics was transformed as DNA sequencing elucidated the degrees of affinity between different organisms.[18]


Zoology is the branch of science dealing with animals. A species can be defined as the largest group of organisms in which any two individuals of the appropriate sex can produce fertile offspring; about 1.5 million species of animal have been described and it has been estimated that as many as 8 million animal species may exist.[19] An early necessity was to identify the organisms and group them according to their characteristics, differences and relationships, and this is the field of the taxonomist. Originally it was thought that species were immutable, but with the arrival of Darwin’s theory of evolution, the field of cladistics came into being, studying the relationships between the different groups or cladesSystematics is the study of the diversification of living forms, the evolutionary history of a group is known as its phylogeny, and the relationship between the clades can be shown diagrammatically in a cladogram.[20]

Although someone who made a scientific study of animals would historically have described themselves as a zoologist, the term has come to refer to those who deal with individual animals, with others describing themselves more specifically as physiologists, ethologists, evolutionary biologists, ecologists, pharmacologists, endocrinologists or parasitologists.[21]

Branches of zoology

Although the study of animal life is ancient, its scientific incarnation is relatively modern. This mirrors the transition from natural history to biology at the start of the 19th century. Since Hunter and Cuvier, comparative anatomical study has been associated with morphography, shaping the modern areas of zoological investigation: anatomyphysiologyhistologyembryologyteratology and ethology.[22] Modern zoology first arose in German and British universities. In Britain, Thomas Henry Huxley was a prominent figure. His ideas were centered on the morphology of animals. Many consider him the greatest comparative anatomist of the latter half of the 19th century. Similar to Hunter, his courses were composed of lectures and laboratory practical classes in contrast to the previous format of lectures only.


Scientific classification in zoology, is a method by which zoologists group and categorize organisms by biological type, such as genus or species. Biological classification is a form of scientific taxonomy. Modern biological classification has its root in the work of Carl Linnaeus, who grouped species according to shared physical characteristics. These groupings have since been revised to improve consistency with the Darwinian principle of common descentMolecular phylogenetics, which uses nucleic acid sequence as data, has driven many recent revisions and is likely to continue to do so. Biological classification belongs to the science of zoological systematics.[23]

Linnaeus’s table of the animal kingdom from the first edition of Systema Naturae (1735)

Many scientists now consider the five-kingdom system outdated. Modern alternative classification systems generally start with the three-domain systemArchaea (originally Archaebacteria); Bacteria (originally Eubacteria); Eukaryota (including protistsfungiplants, and animals)[24] These domains reflect whether the cells have nuclei or not, as well as differences in the chemical composition of the cell exteriors.[24]

Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domainkingdomphylumclassorderfamilygenusspecies. The scientific name of an organism is generated from its genus and species. For example, humans are listed as Homo sapiensHomo is the genus, and sapiens the specific epithet, both of them combined make up the species name. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the specific epithet in lowercase. Additionally, the entire term may be italicized or underlined.[25]

The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. The classification, taxonomy, and nomenclature of zoological organisms is administered by the International Code of Zoological Nomenclature. A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature, but has yet to be formally adopted.[26]

Vertebrate and invertebrate zoology

Vertebrate zoology is the biological discipline that consists of the study of vertebrate animals, that is animals with a backbone, such as fishamphibiansreptilesbirds and mammals. The various taxonomically oriented disciplines such as mammalogybiological anthropologyherpetologyornithology, and ichthyology seek to identify and classify species and study the structures and mechanisms specific to those groups. The rest of the animal kingdom is dealt with by invertebrate zoology, a vast and very diverse group of animals that includes spongesechinodermstunicateswormsmolluscsarthropods and many other phyla, but single-celled organisms or protists are not usually included.[27]

Structural zoology

Cell biology studies the structural and physiological properties of cells, including their behavior, interactions, and environment. This is done on both the microscopic and molecular levels for single-celled organisms such as bacteria as well as the specialized cells in multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.

Anatomy considers the forms of macroscopic structures such as organs and organ systems.[28] It focuses on how organs and organ systems work together in the bodies of humans and animals, in addition to how they work independently. Anatomy and cell biology are two studies that are closely related, and can be categorized under “structural” studies. Comparative anatomy is the study of similarities and differences in the anatomy of different groups. It is closely related to evolutionary biology and phylogeny (the evolution of species).[29]


Animal anatomical engraving from Handbuch der Anatomie der Tiere für Künstler.

Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of “structure to function” is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Physiology studies how for example nervousimmuneendocrinerespiratory, and circulatory systems, function and interact.[30]

Developmental biology

Developmental biology is the study of the processes by which animals and plants reproduce and grow. The discipline includes the study of embryonic developmentcellular differentiationregenerationasexual and sexual reproductionmetamorphosis, and the growth and differentiation of stem cells in the adult organism.[31] Development of both animals and plants is further considered in the articles on evolutionpopulation geneticshereditygenetic variabilityMendelian inheritance, and reproduction.

Evolutionary biology

Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. Evolutionary research is concerned with the origin and descent of species, as well as their change over time, and includes scientists from many taxonomically oriented disciplines. For example, it generally involves scientists who have special training in particular organisms such as mammalogyornithologyherpetology, or entomology, but use those organisms as systems to answer general questions about evolution.[32]

Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution,[33] and partly on the developments in areas such as population genetics[34] and evolutionary theory. Following the development of DNA fingerprinting techniques in the late 20th century, the application of these techniques in zoology has increased the understanding of animal populations.[35] In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. Related fields often considered part of evolutionary biology are phylogeneticssystematics, and taxonomy.[36]


Kelp gull chicks peck at red spot on mother’s beak to stimulate the regurgitating reflex.

Ethology is the scientific and objective study of animal behavior under natural conditions,[37] as opposed to behaviorism, which focuses on behavioral response studies in a laboratory setting. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book, The Expression of the Emotions in Man and Animals, influenced many future ethologists.[38]

A subfield of ethology is behavioral ecology which attempts to answer Nikolaas Tinbergen‘s four questions with regard to animal behavior: what are the proximate causes of the behavior, the developmental history of the organism, the survival value and phylogeny of the behavior?[39] Another area of study is animal cognition, which uses laboratory experiments and carefully controlled field studies to investigate an animal’s intelligence and learning.[40]


Biogeography studies the spatial distribution of organisms on the Earth,[41] focusing on topics like plate tectonicsclimate changedispersal and migration, and cladistics. It is an integrative field of study, uniting concepts and information from evolutionary biologytaxonomyecologyphysical geographygeologypaleontology and climatology.[42] The origin of this field of study is widely accredited to Alfred Russel Wallace, a British biologist who had some of his work jointly published with Charles Darwin.[43]

Molecular biology

Molecular biology studies the common genetic and developmental mechanisms of animals and plants, attempting to answer the questions regarding the mechanisms of genetic inheritance and the structure of the gene. In 1953, James Watson and Francis Crick described the structure of DNA and the interactions within the molecule, and this publication jump-started research into molecular biology and increased interest in the subject.[44] While researchers practice techniques specific to molecular biology, it is common to combine these with methods from genetics and biochemistry. Much of molecular biology is quantitative, and recently a significant amount of work has been done using computer science techniques such as bioinformatics and computational biologyMolecular genetics, the study of gene structure and function, has been among the most prominent sub-fields of molecular biology since the early 2000s. Other branches of biology are informed by molecular biology, by either directly studying the interactions of molecules in their own right such as in cell biology and developmental biology, or indirectly, where molecular techniques are used to infer historical attributes of populations or species, as in fields in evolutionary biology such as population genetics and phylogenetics. There is also a long tradition of studying biomolecules “from the ground up”, or molecularly, in biophysics.[45]


Ads by: Memento Maxima Digital Marketing
@[email protected]

It's only fair to share...Share on FacebookShare on Google+Tweet about this on TwitterEmail this to someonePrint this page